图书详情

走进奇妙的数学世界3
ISBN:9787513308076
作者:(日)安野光雅 著 ,李玉珍 译
出版社:新星出版社
出版日期:2013-1-1
年龄/主题/大奖/大师: 4-5(中班)、5-6(大班)、6-8(1-2年级)、安野光雅、认知、科普、色彩、数学、趣味、想象力、
内容简介

  世界级绘本大师、国际安徒生奖得主安野光雅不仅擅长画画,知识也非常渊博,在人文、数学、建筑、文学等领域都有颇深的造诣。他擅长创作数学主题的绘本,将艺术与科学融为充满幽默的视觉游戏,构筑出兼具知性与诗意、充满童趣的“安野风格”,展现出敏锐的想象力和缜密的逻辑推理能力,将读者带入一个可以自由联想的魔法数学世界。
  在这三本以数学为主题的绘本中,安野光雅从生活中司空见惯的现象、事物入手,用生动优美的图画,风趣幽默地呈现数学原理和概念的由来,通过有趣的游戏、手工和故事,让数学变得简单、好玩,引导孩子自己动手、思考、发现,启发孩子对数学的兴趣。
  第一章:魔药(背后的数学思想:变化与位相,拓扑学)
  两个小矮人调制了两种魔药,一种可以让物体横向伸缩,一种可以让物体纵向伸缩,涂抹不同的魔药,物体就有被压缩或拉伸的感觉。站在高楼上俯身往下看,拿着书横着看过去,物体的长度并未改变,视觉感受却不一样。不过,不管图形怎么变化,两只眼睛不会变成三只,嘴巴也不会跑到鼻眼睛上面去——这便是变化中的“不变”。本章通过有趣的游戏,让孩子们从生活中发现拓扑学。
  第二章:漂亮的三角形(背后的数学思想:三角形基本概念与应用,初等几何学)
  与花草树木所属的“自然”不同,三角形是另一种“自然”,虽默默无闻,但它的美丽更让人觉得不可思议。三角形在生活中随处可见,所有平面上的三角形具有共同的几何学上的性质,本章即引导孩子去接近和认识三角形,欣赏三角形的变化和趣味。通过折纸和剪纸游戏,安野光雅带领孩子们了解三角形,再从平面到立体,创造出各种有趣的造型,体验玩三角形的乐趣。
  第三章:迷宫(背后的数学思想:拓扑学应用,一笔画)
  迷宫是一种必须运用逻辑思考,需全面观察判断的益智游戏。在本章中,作者以树枝旁生、分叉的方式来说明,读者可以利用这种方式,自己设计迷宫和孩子一起玩。从迷宫延伸开来,通过七孔桥问题,作者引入了对于“一笔画”的介绍,生活中有各种各样的一笔画,哪些画是可以一笔画成的?
  第四章:左和右(背后的数学思想:左和右的位置关系,方位,如何描述路线)
  用文字表述左和右并不容易,在本章中,作者用活泼的图画和生动的描述,让孩子从认识自己身体的左右开始,循序渐进认识生活中常见的事物和居住环境的左和右。从同侧看,从对面看,从镜子里看……作者也不忘记通过各种变换形式让孩子们理解左和右的相对性。
  理解了左和右,作者进而引入方位的概念,如何依照地图找到想要去的地方。孩子们可以用语言描述如何去往目的地,逐渐增进方位感和空间位置的概念。

编辑推荐

数学最让人困惑的是为什么这样和有什么用,很多人即使大学毕业也不明白,这套书完美地阐释了数学的本质,把数学和生活紧密联系在一起。
  ★ 13种基本数学思想,层层深入,完美阐释数学的本质。
  ★以两个小矮人贯穿全文,图文并茂,讲故事、出谜题、做游戏,游戏背后蕴藏数学概念让孩子以最简单、最科学的方式走近数学,爱上数学!
  ★ 不仅仅讲算术,更重在启发从不同角度看待事物、解决问题的思考方式,培养孩子的逻辑思维能力,提高综合素质。
  ★ 国际安徒生奖得主、《旅之绘本》作者 安野光雅 最经典的作品。
  ★ 打破数学给人的枯燥、刻板的印象,集科学与艺术为一身,精心绘制优美图画,让孩子领略科学与艺术的双重美感。
  ★ 美国《出版家周刊》《学校图书馆杂志》推荐
  ★ 荣获日本数学会出版大奖、日本产经儿童出版文化奖,日本全国学校图书馆协议会选定图书,日文版累计重印高达150次
  ★全3册,每册104页(4-5章内容,每章着重讲述一种数学思想),书后附有安野光雅亲自撰写的说明文字,对所涉及的数学知识进行详尽的补充,延展性强,极具启发性。
  ★ 精心挑选优质纸张印刷,最大程度接近原版纸质,质感细腻,色彩柔和,力求完美呈现安野笔下优美、温润的图画世界。

他们说

  不是一伙的
  本书最早出版时,有不少人都很吃惊:“这也是数学书吗?”这样的反应倒在我的意料之中,因为过去从没有过这种连猪和小鸟都有的数学书。如果只是要教数字和图形的话,好的数学书有很多。但我想,有没有那种书呢,不仅讲算术,还讲所有学问普遍适用的思考方法,并且能够从中分享发现和创造的喜悦,偶尔还会让人产生困惑,这样的书该多有意思啊。最后我发现,这样的书便是数学书。这也是本书之所以决定为数学书的原因。
  “数学”一词是由“Mathematics”翻译而来的,词源上并没有数学的意思,也不局限于数量和图形,而是更接近于求知和思考方法的意思。听到这些,我感到安心多了。一直以来困扰着我们,让我们觉得很难学的“算术”或“数学”,原来并非数学的本质。真正的数学处处蕴藏着发现的喜悦。数学是一栋自有史以来就不断被创造、被丰富着的宏伟的思想“建筑”。有的部分正经历着大改造,有的部分相对完善,也有的部分眼下正在建设中。
  为了给这栋建筑物再砌上一块砖,有的数学家倾注了一生的心血。但也正因为如此,这栋建筑物才能如此美丽。也因此,我们才想尽方法培养孩子认识这栋建筑物的能力。
  在数学中,进行数量加减运算的前提条件是单位相同。比如在第6页中,我们可以说图里有8只鸭子和1只狐狸,也可以说图里有9只小动物,单位不同,得出的结果就不同。本章的目的就是为了让大家思考“单位1”后面隐含的那个条件。最初人们有两种做法:
  I. 给出一个条件,并按此条件收集东西。
  II. 从收集到的东西中找出那个条件。
  本章采用的是方法II,比方法I稍微麻烦点。这就是初级集合论的思想。其中所举的例子有些或许会比较难,而且根据不同的分析方式,有时候还会得出两种结论,孩子们理解不了的时候,大人就陪他们一起来伤脑筋吧。如果你给了孩子很多提示,以帮助他们解答问题,那你只是教给了他一种知识;而当孩子和小伙伴们经过讨论,靠自己的能力得出答案时,即便有错,他们也能从中学会思考问题的方法和步骤,并获得发现的喜悦。
  魔力药水
  您见到过这样的画吗?画中的动物长着马脸、羊脚、狮子尾巴,额头上还有一个角。这就是古人根据希腊神话中的独角兽画成的美丽的画。
  法国超现实主义诗人洛特雷阿蒙曾写过一首诗,名叫《马尔多罗之歌》,其中有一句特别有名:
  “就像一架缝纫机和一把雨伞在解剖台上偶然相遇般美丽。”
  读这句诗的时候,你是否能体会到一种从未体验过的幻觉之美?!就像中世纪的炼金术一样,从很久很久以前起,把两种不同的东西结合起来思考是创造新事物的重要方法。所谓炼金术,就是试着使各种东西混合或者分离,偶尔也会有这样的情况:从炉中取出来的虽然不是金子,却是一种新物质。如果说希腊神话是信仰与幻想的炼金术,那么超现实派诗歌就是语言的炼金术,除了产生美以外,并没有其他什么东西。不过,中世纪真正的炼金术却真的提炼出了东西。
  你知道病原菌是怎样被发现的吗?自从发明显微镜后,人类就开始认识包括“细菌”在内的微生物世界了。由于在某类病人体内总能发现特定的细菌,因此,医学研究者将这两点结合在一起考虑,从而联想到这种特定的细菌就是病原菌,即致病的原因所在。现在看来这根本不算什么,但在当时,想要得出这样的推断,可绝不是炼金术之类的结合方法就能做到的。因为在那个年代,连医生都不相信这类肉眼看不见的东西能让一个好端端的人生病,更何况出现在显微镜下的并非只有一种特定的细菌。
  从把面包涂上黄油这类简单的组合,到必须天才才能完成的发现和发明,这当中都需要将一些东西进行或结合、或分离的工作。数学上将之称为“乘”,但在这里并不是指乘法的“乘”,而是有着更广泛的含义。“乘”不仅运用于数学领域,还是一个普通的日常用语。算术中的×表示一种数量关系,而这里的“乘”,则是一种最基本的思考方法。
  本章就是从“乘”这个动作所引出的有趣例题开始的。就好像棒球赛中的循环赛制一样,运用“乘法”,可以让任意两支球队都有交战的机会。这其实就是按一定的顺序逐一运用炼金术的方法进行组合。至于像38页那样的图形组合,就是更加需要灵感的一种“乘法”了。
  数一数水
  “把两块一样大的黏土合在一起,揉成一团,用算式表示的话不就是1+1=1 吗?”有人因被问到这样的问题而很伤脑筋。
  那么怎样才能给这个明显的错误做出明确的说明呢?
  所谓数量,可以分为两种情况:①像人和苹果那样,可以一个一个数出来,如果进行了分割,原来的形状就会改变。(数学上称这类量为离散量,也就是“数字圈圈”那一章中介绍的数量。)②像水、砂糖那样,不能一个一个地数,或者像时间、距离那样,会无穷尽地连续下去,因而不能用前一章中讲的圈圈的方法表示。(数学上称这类量为连续量,也就是“数一数水”这章中介绍的数量。)测量连续量之前,首先要定好单位。
  我们再来看前面那个问题,把本来具有连续量性质的黏土,用处理离散量的方法来做加法计算,难怪会让人觉得困惑。在这种情形下,只要明确了“把什么当做1”(单位)这个概念,就算把再多的黏土团儿揉捏在一起,也不会出什么问题。
  本章的主题,是把小玻璃杯作为“量杯”(单位)来测量水。所谓“测量”,就是以单位来数数量。因而不要只是读完这本书就算了,我希望大家也能实际地去量一量水,这样才能更加体会到其真正的意义。在此赘述一句,在测量水的体积时,世界通用的单位是L(升),大家都知道,1L等于1000cm3,是以长度为基本单位的。
  1792年夏天的某一天,法国测量队一行人扛着信号机、反射镜和其他一些工具,越过边境进入西班牙。相信那时一定会有很多人怀疑这一行人的动机,也许会盘问他们:“你们究竟是来做什么的?”“我们想测量子午线,也就是说,要测量地球的周长,并以此为基准来制定长度的单位。”然而当时有谁会当真呢?在那个时候,各国、各地区都有各自的测量单位,所以非常不方便。法国度量衡委员会希望能找到一个世界通用的长度单位,于是向全世界提议:把人类共同的财产—最大而又不变的地球加以测量,测出赤道到北极之间通过巴黎的子午线长度,再以该弧长的千万分之一为1米。
  想到我们现在使用的“米”这个单位,不是某个统治者的身高,也不是哪个神殿的长度,而是以独一无二、无法替代的地球为基准制定的,不禁让人肃然起敬!现今,根据国际度量衡大会对米所作的新定义,光在1/299792458(约三亿分之一)秒内在真空中传播的距离为1米。
  漂亮的三角形
  相信大人们都知道,任何一个三角形的内角之和都等于两个直角。记得中学学习初等几何时,我曾感叹过:“三角形内角之和怎么刚好等于两个直角呢!”一按下开关电视就会播放节目,拨个电话就能和远方的人通话,这些虽然让我们着实惊叹,但都是人为设计、制造出来的,跟蜜蜂采蜜、候鸟不会迷路等奇妙的自然现象相比,就没什么了不起了。
  想从大自然中找出像三角洲、矿石的结晶体那样纯粹的三角形,通常来说比较困难。但是如果把范围扩大到土木、建筑、交通、游戏等领域,从力学的视角来看,我们就会发现三角形无处不在。像这样抽象地来观察三角形,我们就会明白,无论是和建筑有关的三角形,还是和交通有关的三角形,只要是三角形,就必定具备共同的几何学性质。
  比起“为什么会开红色的花”这类大自然的神奇之处,默默无语的三角形那完整无缺的美丽,更让我觉得神奇!三角形虽然不同于鸟、虫一类的自然物,但我们可以把它看成另外一种自然。除了人类,没有其他生物会发觉它的神奇,任何智者也无法凭空创造出这样的奥妙。
  两千多年前,欧几里得(Euclid,约公元前325-公元前265年,古希腊数学家,被称为“几何之父”)创立了以三角形为代表的几何学,作为数学论证中的典型,这个美妙的体系一直保存至今。
  孩子们将来必然会与这门学科相遇,我希望孩子们是被它本身的协调之美所感动,自发地去靠近它、学习它、了解它,而不是为了考试,或是为了当测量师。
  本章如果用几何学来说明,有些内容难免会变得太深奥,可如果把它当成一种游戏,就可以轻松地接近它了。也就是说,不要把它当成正式的、需要一一加以证明的几何学,而是当成可以让孩子边玩边看的游戏。相信不同年龄的孩子自会有不同的玩法和乐趣。
  我曾经听过这么一个笑话:从前,德川家康(日本战国时代末期杰出的政治家、军事家)在课堂上听老师讲解“三角形的内角之和等于两个直角”的时候,问老师,“像琵琶湖(日本第一大淡水湖)那么大的三角形,内角之和也等于两个直角吗?”引来同学们的笑声一片。其实我们不应该只把它当做笑话来看,因为像地球那么大的球面上的三角形,其内角之和就不一定等于两个直角了。这时涉及的原理不属于欧几里得平面几何,所以又诞生了所谓的“非欧几里得几何学”,这可以称为科学史上的革命。大概唯有带着感动的目光和创造性的态度去看待这个世界,才能达成这样的学问革命吧。

书摘与插图