
第二章:比一比、想一想(背后的数学思想:数学式的观察与比较)
两个洋娃娃、两只狗、两幅图、两个迷宫……左右两页的图看起来一样,但仔细看又不太一样,到底哪里一样,哪里又不一样,通过仔细地观察和比较,孩子们就能得出答案了。比较着思考是一种基本的思考方法,针对问题善用观察、分析、比较的能力,有助于做出全面正确的抉择。
数学最让人困惑的是为什么这样和有什么用,很多人即使大学毕业也不明白,这套书完美地阐释了数学的本质,把数学和生活紧密联系在一起。
★ 13种基本数学思想,层层深入,完美阐释数学的本质。
★ 以两个小矮人贯穿全文,图文并茂,讲故事、出谜题、做游戏,游戏背后蕴藏数学概念让孩子以最简单、最科学的方式走近数学,爱上数学!
★ 不仅仅讲算术,更重在启发从不同角度看待事物、解决问题的思考方式,培养孩子的逻辑思维能力,提高综合素质。
★ 国际安徒生奖得主、《旅之绘本》作者 安野光雅 最经典的作品。
★ 打破数学给人的枯燥、刻板的印象,集科学与艺术为一身,精心绘制优美图画,让孩子领略科学与艺术的双重美感。
★ 美国《出版家周刊》《学校图书馆杂志》推荐
★ 荣获日本数学会出版大奖、日本产经儿童出版文化奖,日本全国学校图书馆协议会选定图书,日文版累计重印高达150次
★ 全3册,每册104页(4-5章内容,每章着重讲述一种数学思想),书后附有安野光雅亲自撰写的说明文字,对所涉及的数学知识进行详尽的补充,延展性强,极具启发性。
★ 精心挑选优质纸张印刷,最大程度接近原版纸质,质感细腻,色彩柔和,力求完美呈现安野笔下优美、温润的图画世界。
数一数水
“把两块一样大的黏土合在一起,揉成一团,用算式表示的话不就是1+1=1 吗?”有人因被问到这样的问题而很伤脑筋。
那么怎样才能给这个明显的错误做出明确的说明呢?
所谓数量,可以分为两种情况:①像人和苹果那样,可以一个一个数出来,如果进行了分割,原来的形状就会改变。(数学上称这类量为离散量,也就是“数字圈圈”那一章中介绍的数量。)②像水、砂糖那样,不能一个一个地数,或者像时间、距离那样,会无穷尽地连续下去,因而不能用前一章中讲的圈圈的方法表示。(数学上称这类量为连续量,也就是“数一数水”这章中介绍的数量。)测量连续量之前,首先要定好单位。
我们再来看前面那个问题,把本来具有连续量性质的黏土,用处理离散量的方法来做加法计算,难怪会让人觉得困惑。在这种情形下,只要明确了“把什么当做1”(单位)这个概念,就算把再多的黏土团儿揉捏在一起,也不会出什么问题。
本章的主题,是把小玻璃杯作为“量杯”(单位)来测量水。所谓“测量”,就是以单位来数数量。因而不要只是读完这本书就算了,我希望大家也能实际地去量一量水,这样才能更加体会到其真正的意义。在此赘述一句,在测量水的体积时,世界通用的单位是L(升),大家都知道,1L等于1000cm3,是以长度为基本单位的。
1792年夏天的某一天,法国测量队一行人扛着信号机、反射镜和其他一些工具,越过边境进入西班牙。相信那时一定会有很多人怀疑这一行人的动机,也许会盘问他们:“你们究竟是来做什么的?”“我们想测量子午线,也就是说,要测量地球的周长,并以此为基准来制定长度的单位。”然而当时有谁会当真呢?在那个时候,各国、各地区都有各自的测量单位,所以非常不方便。法国度量衡委员会希望能找到一个世界通用的长度单位,于是向全世界提议:把人类共同的财产—最大而又不变的地球加以测量,测出赤道到北极之间通过巴黎的子午线长度,再以该弧长的千万分之一为1米。
想到我们现在使用的“米”这个单位,不是某个统治者的身高,也不是哪个神殿的长度,而是以独一无二、无法替代的地球为基准制定的,不禁让人肃然起敬!现今,根据国际度量衡大会对米所作的新定义,光在1/299792458(约三亿分之一)秒内在真空中传播的距离为1米。